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Abstract
The possibility of the backward waves and negative refractive indices of the
gyrotropic chiral materials is studied, and the impedances of the eigenmodes are
derived. Since the gyrotropic parameters in the permittivity and permeability
tensors favour the realization of the negative refractive index in the gyrotropic
chiral material, the negatively refracting medium can be achieved even far off
the resonances of the permittivity and permeability. A potential effect of the
field quantization in a compact subwavelength cavity resonator containing the
gyrotropic chiral material is suggested.

PACS numbers: 78.20.Ci, 74.25.Nf, 42.55.Sa

1. Introduction

Recently, a new type of artificial metamaterials (also called left-handed media or
negative refractive index media), whose electric permittivity and magnetic permeability are
simultaneously negative in a frequency band, have attracted considerable attention of many
researchers in various fields (see e.g. [1–3]). These metamaterials exhibit a number of peculiar
electromagnetic and optical properties, including the reversals of both Doppler shift and
Cherenkov radiation [1], negative refraction [1], amplification of evanescent waves [3] (which
leads to subwavelength focusing (see e.g. [3, 4])), negative Goos-Hänchen shift [5], reversed
circular Bragg phenomenon [6] and localization of electromagnetic waves [7]. One of the
potential applications of negative refractive index materials is the so-called superlens (perfect
lens) because a slab of such a metamaterial may focus both the propagating and evanescent
components of the field produced by a point source (object) [3]. At present, there are several
approaches to the realization of negative index materials, including artificial metamaterials
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[8, 9]), photonic crystal structures [10–13], transmission line simulation [14] as well as
photonic resonant materials [15, 16]. The first three methods are based on the classical
electromagnetic theory, and the mechanism in the fourth scheme is the quantum coherence
and quantum interference.

Left-handed media in the microwave region have been fabricated experimentally [2].
The impact would be much larger if we can realize negative refraction at optical frequencies
(beating the diffraction limit can give revolutionary breakthroughs to, e.g., the optical storage
industries). More recently, Tretyakov and Pendry et al suggested a new route to the negative
refraction [17, 18] by using chiral materials, the permittivity of which can have resonances
in the optical frequency regions. Some natural and optically chiral media can be considered
as a homogeneous medium (sugar solution in water is probably the cheapest optical chiral
medium). Theoretically, a chiral parameter can actually be larger than the square root of the
product of permittivity and permeability, and then negative refraction (or backward wave)
will occur at one of the eigen polarizations [19]. On the other hand, the chiral parameter is
always small for all the existing chiral media (regardless of natural or artificial). Therefore, a
good way to achieve negative refraction in a chiral medium is to choose a working frequency
at which permittivity is very small. This can occur at or near the resonant frequency of the
permittivity of a chiral medium (called chiral nihility). But the chiral nihility does not arise
when the frequency is far off resonance. In the present paper, we study the possibility of
backward wave propagation in a generalized material (gyrotropic chiral medium). We think
the gyrotropic chiral medium may have some advantage over the chiral medium: specifically,
negative refraction can occur in a gyrotropic chiral medium without requiring the permittivity
to be very small at a working frequency (cf equation (21)). In other words, the negative
refractive index and backward wave propagation can be achieved even far off the resonances
of the permittivity and permeability because the gyrotropic parameters can dramatically reduce
the refractive indices of the eigenmodes inside the gyrotropic chiral medium. This is one of
the most remarkable features in the present scheme to realize negative refraction3. We also
study the impedance of the polarized modes inside the gyrotropic chiral media, and consider
the possibility of impedance match at the air–medium interfaces. In addition, we suggest
that a field quantization effect may arise in the subwavelength cavity resonator containing the
gyrotropic chiral medium.

2. Backward eigenmodes in a gyrotropic chiral medium

The constitutive relation of gyrotropic media involves the permittivity and permeability tensors
ε̂, µ̂. The constitutive relation of a gyrotropic chiral medium can be written in the following
general form: {

D = ε̂ε0E + (χ + jα)H,

B = µ̂µ0H + (χ − jα)E,
(1)

where α and χ denote the chirality and nonreciprocity parameters, respectively [20]. j is the
imaginary unit, satisfying j2 = −1. The permittivity and permeability tensors are [1]

ε̂ =

 ε1 −jε2 0

jε2 ε1 0
0 0 ε3


 , µ̂ =


µ1 −jµ2 0

jµ2 µ1 0
0 0 µ3


 , (2)

3 After this paper was accepted, we found that very recently, Mackay and Lakhtakia had considered a scheme of
negative refraction similar to ours but with different emphases (quantum or classical aspects) on the electromagnetic
and optical properties [28].
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where ε2 and µ2 are the gyroelectric and gyromagnetic parameters, respectively. Such a
gyrotropic chiral medium can be a chiroplasma material consisting of chiral objects embedded
in a magnetically biased plasma, or a chiroferrite material made from chiral objects immersed
in a magnetically biased ferrite [21].

In what follows, we analyse the wave propagation inside the gyrotropic chiral medium, and
study the refractive indices for the eigenmodes inside the medium. Consider a time harmonic
wave exp[ j(ωt −kx3)], which is propagating along the x3-direction inside the gyrotropic chiral
media. From equations (1) and (2), one can have

D =




ε0(ε1E1 − jε2E2) + (χ + jα)H1

ε0( jε2E1 + ε1E2) + (χ + jα)H2

0


 , B =




µ0(µ1H1 − jµ2H2) + (χ − jα)E1

µ0( jµ2H1 + µ1H2) + (χ − jα)E2

0


 .

(3)

For a time harmonic electromagnetic wave, the Maxwellian equations ∇ × E = − ∂
∂t

B,

∇ × H = ∂
∂t

D can be rewritten as k × E = ωB, k × H = −ωD. In the meantime, we can
obtain the relations k × E = (−kE2, kE1, 0), k × H = (−kH2, kH1, 0) for the time harmonic
wave exp[ j(ωt − kx3)] propagating along the x3-direction.

In view of the above analysis, the following relations can be obtained:


−kE2 = ω[µ0(µ1H1 − jµ2H2) + (χ − jα)E1],

kE1 = ω[µ0( jµ2H1 + µ1H2) + (χ − jα)E2],

−kH2 = −ω[ε0(ε1E1 − jε2E2) + (χ + jα)H1],

kH1 = −ω[ε0( jε2E1 + ε1E2) + (χ + jα)H2].

(4)

From the first and second formulae in equation (4), we can obtain the expressions for E2 and
E1 in terms of both H2 and H1:

E2 = −1

k2 + (χ − jα)2ω2
{[ωkµ0µ1 + j(χ − jα)ω2µ0µ2]H1

+ [−jωkµ0µ2 + (χ − jα)ω2µ0µ1]H2}, (5)

and

E1 = 1

k2 + (χ − jα)2ω2
{[ jωkµ0µ2 − (χ − jα)ω2µ0µ1]H1

+ [ωkµ0µ1 + j(χ − jα)ω2µ0µ2]H2}. (6)

For convenience, expressions (5) and (6) are rewritten as

E1 = bH1 − aH2, E2 = aH1 + bH2, (7)

where 


a = − 1

k2 + (χ − jα)2ω2
[ωkµ0µ1 + j(χ − jα)ω2µ0µ2],

b = − 1

k2 + (χ − jα)2ω2
[−jωkµ0µ2 + (χ − jα)ω2µ0µ1].

(8)

We analyse the wave vectors of the time harmonic wave propagating inside the
gyrotropic chiral medium. Substitution of expression (7) into the third and fourth formulae of
equation (4) yields



(
k

ω
+ ε0ε1a + jε0ε2b

)
H2 = [ε0(ε1b − jε2a) + (χ + jα)]H1,(

− k

ω
− jε0ε2b − ε0ε1a

)
H1 = [ε0(−jε2a + ε1b) + (χ + jα)]H2,

(9)
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which leads to the following relation:(
k

ω
+ ε0ε1a + jε0ε2b

)2

+ [ε0(ε1b − jε2a) + (χ + jα)]2 = 0. (10)

Further calculation yields the two expressions (dispersion relations):

k

ω
+ ε0ε1a + jε0ε2b = j[ε0(ε1b − jε2a) + (χ + jα)], (11)

and
k

ω
+ ε0ε1a + jε0ε2b = −j[ε0(ε1b − jε2a) + (χ + jα)]. (12)

We first consider the dispersion relation (11), which can now be rewritten in the form

k

ω
+ ε0(ε1 − ε2)(a − jb) = j(χ + jα), (13)

where the explicit expression for the term a − jb can be derived from the definition (8), i.e.,

a − jb = − ωµ0(µ1 − µ2)

k + jω(χ − jα)
. (14)

Inserting expression (8) for the parameters a, b into formulae (13) and (14), one can obtain(
k

ω
+ α

)2

= ε0µ0(ε1 − ε2)(µ1 − µ2) − χ2, (15)

and hence
k

ω
= ±

√
ε0µ0(ε1 − ε2)(µ1 − µ2) − χ2 − α. (16)

Secondly, we consider another dispersion relation (12), which can be rewritten as

k

ω
+ ε0(ε1 + ε2)(a + jb) = −j(χ + jα), (17)

where

a + jb = − ωµ0(µ1 + µ2)

k − jω(χ − jα)
. (18)

Inserting expression (8) for the parameters a, b into formulae (17) and (18), one can obtain(
k

ω
− α

)2

= ε0µ0(ε1 + ε2)(µ1 + µ2) − χ2, (19)

and hence
k

ω
= ±

√
ε0µ0(ε1 + ε2)(µ1 + µ2) − χ2 + α. (20)

The four roots in expressions (16) and (20) correspond to the four eigenmodes (i.e.,
two pairs of counter-propagating modes for two mutually perpendicular polarization vectors
pR, pL) inside the gyrotropic chiral material. According to the two final results (16) and (20),
the refractive indices for the time harmonic waves inside the gyrotropic chiral medium are

nR = c[
√

ε0µ0(ε1 ± ε2)(µ1 ± µ2) − χ2 + α],

nL = c[
√

ε0µ0(ε1 ± ε2)(µ1 ± µ2) − χ2 − α],
(21)

for the polarization vectors pR, pL, respectively. The signs ± for each polarization correspond
to the waves propagating along the ±x3-directions.
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Here we discuss the possibility of backward eigenmodes in a gyrotropic chiral medium
through analysing expression (21).

(i) The case of pure chirality (without any gyrotropy): µ2 = ε2 = 0, and χ = 0.
Expression (21) becomes

nR,L = c(
√

ε0µ0ε1µ1 ± α). (22)

This is the so-called chiral route to negative refractive index materials (the case considered
by Tretyakov et al [19, 18]). Recent studies have demonstrated that the backward waves can
propagate in chiral materials with positive parameters ε1, µ1 [19, 18]. Near the resonance
of electric and magnetic susceptibilities ε1µ1 can become smaller. If ε1µ1 = 0 (nihility) or
ε0µ0ε1µ1 < α2, one of the refractive indices nR,L will possess a minus sign, which means that a
backward wave can propagate in such chiral media. As stated by Tretyakov recently, the above
phenomenon in chiral microwave composites can take place naturally, because the inclusions
are usually small spirals having resonant electric and magnetic polarizabilities [17]. As the
chiral media are readily available and the permittivity can have resonances in the optical range,
the chiral nihility is a very exciting new opportunity to realize negative refraction and related
effects in the optical region in effectively uniform media [17]. During the last two decades,
chiral media and bi-isotropic materials have captured extensive attention of many authors.
But no one has paid attention to the possible backward wave propagation in chiral media.
Instead, they believed that both of the two eigenmodes should be forward, and formulated
a corresponding restriction ε0µ0ε1µ1 > α2 for the material parameters [23]. In fact, this
restriction condition may be neither necessary nor essential for the material parameters and
can be ruled out without any fear [17]. This, therefore, allows the backward wave propagation
in chiral media. The chiral parameter can actually be larger than the square root of the product
of permittivity and permeability, and then negative refraction (or backward wave) will occur
at one of the eigen polarizations [19].

In a word, chiral negative refraction is a new way to realize the backward wave propagation
under the condition that the permittivity is very small at a working frequency. But we will
show later that the negative refraction can also occur in a gyrotropic chiral medium without
requiring the permittivity to be very small at a working frequency.

(ii) The case of general bi-isotropic media: µ2 = ε2 = 0, but χ �= 0. Expression (21)
becomes

nR,L = c(
√

ε0µ0ε1µ1 − χ2 ± α). (23)

If the nonreciprocity parameter χ is large enough, the Tellegen medium may have an
opportunity to realize a negative index medium that does not require that the permittivity is
very small at the working frequency. However, the nonreciprocity parameters χ for nearly all
the natural and artificial materials are very small (or negligibly small); it is thus not practical
to realize the negative refractive index by fabricating a Tellegen medium. We will not consider
this case further in this paper.

(iii) The case of gyrotropic chiral media: χ = 0. In this case expression (21) becomes

nR = c[
√

ε0µ0(ε1 ± ε2)(µ1 ± µ2) + α],

nL = c[
√

ε0µ0(ε1 ± ε2)(µ1 ± µ2) − α].
(24)

It follows that the negative index of refraction may be easily achieved even for a small
chiral parameter α since we can let

√
ε0µ0(ε1 ± ε2)(µ1 ± µ2) � 0 if one of the relations

ε1 � ±ε2, µ1 � ±µ2 is satisfied. Recently, Jonsson et al proposed a theory of parametric
generation and amplification for the off-diagonal gyrotropic-matrix elements in an artificially
gyrotropic medium [22]. We believed that the relation ε1 � ±ε2 or µ1 � ±µ2 can be realized
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in the near future with some modern technology, and that the negative refraction in a gyrotropic
chiral medium can be obtained at a far off resonant frequency.

3. Impedances of the backward eigenmode

As shown in [23], the chiral material can be described as the equivalent isotropic media with
respective ε± and µ±. In this formulation, the electric and magnetic fields E and H in chiral
media can be rewritten as E = E+ + E− and H = H+ + H−, respectively. Here E± and
H± are called wavefields [23]. We use the concept of wavefields to study the impedances of
the eigenmodes inside the gyrotropic chiral materials. This requires that the field quantities
D±, B± of the eigenmodes can be written in the form


D+ = ε̂ε0E+ + jαH+ = ε+ε0E+,

B+ = µ̂µ0H+ − jαE+ = µ+µ0H+,

D− = ε̂ε0E− + jαH− = ε−ε0E−,

B− = µ̂µ0H− − jαE− = µ−µ0H−.

(25)

It can be verified that the respective permittivities ε± and permeabilities µ± of the eigenmodes
should agree with the following relation:

µ0ε0(µ̂ − µ±)(ε̂ − ε±) = α2. (26)

Assuming that the wavefields E± and H± satisfy the Maxwellian equations ∇ × E± +
jωµ±µ0H± = 0,∇ × H± − jωε±ε0E± = 0, we can then obtain the permittivity ε± and
permeability µ± of the eigenmodes as follows:


ε± =

√
ε1 ± ε2

µ1 ± µ2

[√
(ε1 ± ε2)(µ1 ± µ2) ± α√

ε0µ0

]
,

µ± =
√

µ1 ± µ2

ε1 ± ε2

[√
(ε1 ± ε2)(µ1 ± µ2) ± α√

ε0µ0

]
,

(27)

and hence the impedances of the eigenmodes are (in the unit of vacuum impedance η0)

η± ≡
√

µ±
ε±

=
√

µ1 ± µ2

ε1 ± ε2
. (28)

The negatively refracting material can be utilized to fabricate a perfect lens [3]. In order to
design perfect lenses, a good impedance match at the vacuum–medium interfaces is required.

From the above expression one sees that it is possible to match the impedance η− =
√

µ1−µ2

ε1−ε2

for the backward eigenmode to that of air at a certain frequency.

4. Subwavelength cavity resonator containing gyrotropic chiral materials

Apart from the superlenses, one of the most exciting applications of the negative refractive
index materials is the so-called compact thin subwavelength cavity resonators (figure 1)
[19, 24, 25]. We study the possibility of the field quantization effect in the compact cavity
resonator that is formed by a layer of gyrotropic chiral material and a layer of a conventional
dielectric medium (see figure 1). It was shown that a pair of planar waves travelling inside
the dielectric system of two planar slabs positioned between two metal planes (or perfectly
conducting reflectors) can satisfy the boundary conditions on the walls (reflectors) and on the
interface between the two slabs even with very thin layers, provided that one of the slabs has
a negative refractive index [19]. In [19, 24, 25], the authors showed that the total thickness
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Figure 1. Configuration of a 1D subwavelength cavity resonator formed by a conventional medium
layer on the left-hand side and a gyrotropic chiral medium layer on the right-hand side between
two electrically perfectly conducting reflectors at z = 0 and z = d1 + d2.

can be far less than the resonant wavelength in the cavity resonator if the thickness ratio of
the two layers is chosen appropriately. The cavity resonator containing a layer of gyroelectric
chiral material with a negative refractive index may have two features: (i) compactness, (ii)
nearly zero value for (ε1 − ε2). These two features may lead to a quantum field effect inside
the subwavelength resonator. For simplicity, in the following analysis we consider only the
eigenmode with the equivalent permittivity ε− and permeability µ− for the gyrotropic chiral
medium [23].

According to the second quantization formulation, the field operator of the planar wave
electric field is given by

Ê = i

√
h̄ωµ

4ε0nγV

[
âk exp(ik · r) − â

†
k exp(−ik · r)

]
ek, (29)

where n and µ denote the relative refractive index and the relative permeability, respectively,
and γ = d(nω)/dω, V is the volume of the medium, and ek stands for the real unit polarization
vector orthogonal to the wave vector k (we assume that the wave vector k is parallel to the
x3-direction in figure 1). Here we use a coherent state to compare a classical electromagnetic
field with a quantized photon field. The coherent state is the most important field state because
it mimics a classical field. The coherent state of an electromagnetic field is defined by

|αk〉 ≡ D(αk)|0〉 = exp
(
αkâ

†
k − α∗

kâk
)|0〉, (30)

where â
†
k, âk denote the photon creation and annihilation operators, respectively. |0〉 is the

vacuum state. The coherent state has the following properties: âk|αk〉 = αk|αk〉, 〈αk|â†
k =

α∗
k〈αk| and n̄k ≡ 〈αk|â†

kâk|αk〉 = α∗
kαk. The last relation means that the average number

(expectation value) n̄k of photons in the coherent state is α∗
kαk.

We consider the relationship between the classical electric field 〈Ê〉 and the quantized
field operator Ê by using the concept of the coherent state, in which the classical field is
defined through 〈Ê〉 = 〈αk|Ê|αk〉. Thus the classical electric field strength is

〈Ê〉 = i

√
h̄ωµ

4ε0nγV
[αk exp(ik · r) − α∗

k exp(−ik · r)]ek. (31)

For convenience, we can assume that the parameter αk in the coherent state is a real number,
and then we have the relation αk = √

n̄k between the parameter αk and the total photon
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number n̄k. Expression (31) is therefore rewritten as

〈Ê〉n̄k = −
√

h̄ωµ

ε0nγV

√
n̄k sin(kz)ek. (32)

In the above we use the coherent state to model the classical field. Photon statistics can be
discussed in terms of how they vary from that of a coherent state. It should be noted that the
classical electric field strength (32) may be discrete since the total number n̄k of photons in
the coherent state is an integer. The degree of discontinuity in 〈Ê〉n̄k can be defined by

δ = 〈Ê〉n̄k+1 − 〈Ê〉n̄k

〈Ê〉n̄k+1
. (33)

Further calculation shows that

δ = 1 −
√

n̄k

n̄k + 1
. (34)

As the number n̄k of photons increases (and hence the electromagnetic field becomes strong),
the degree of discontinuity in the field strength approaches zero (δ → 0). In other words, the
fields become more and more classical (i.e., the field strength 〈Ê〉n̄k is quasi-continuous) as the
average number of photons in the field increases, since the uncertainties become negligible
with respect to the amplitude of the electric (and magnetic) fields. In general, the field in a
cavity resonator formed by conventional materials is strong (as compared with the electric
field

√
h̄ω/ε0V of a single photon), and so the field can be regarded as a continuous classical

field. However, in a compact subwavelength cavity resonator, the critical electric field strength
(the field strength of a single photon) that is a criterion for making a distinction between the
discrete quantized field and the continuous classical field is very large, so that a field that even
has a fairly large field strength should still be treated as a quantized field since such a field
strength may be less than or just a little larger than the critical field strength. This may be
interpreted in more details as follows: the expression for the electromagnetic energy density
in the dispersive medium takes the form

u ≡ 1

2

[
d(εω)

dω
ε0E2 +

d(µω)

dω
µ0H2

]
= n

µ

d(nω)

dω
ε0E2. (35)

For the gyrotropic chiral material, the parameters ε and µ in expression (35) are the equivalent
permittivity ε− and permeability µ− of the eigenmodes. They are defined in expression (27). If
quantized, the total electromagnetic energy in a medium with volume V is uV = (nk +1/2)h̄ω,
where nk and h̄ω/2 denote the total number of photons and the zero-point vacuum fluctuation
energy. Thus, the electric field strength corresponding to nk photons of k-mode field (including
the vacuum fluctuation energy) is

Ek =
√√√√(

nk + 1
2

)
h̄ω

n
µ

d(nω)

dω
ε0V

. (36)

Then the field strength of a single photon (nk = 1) is given by

Ec =
√

3h̄ω

2n
µ

d(nω)

dω
ε0V

, (37)

which is a critical field strength to distinguish between the classical and quantized fields. If
the field strength is much larger than Ec, the field can be considered a classical field. If the
field strength has the same order of magnitude as Ec, the field is undoubtedly a quantized
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one. Moreover, the field is a fluctuation field of quantum vacuum if its field strength is less
than Ec. It is obvious that the critical field strength Ec in the compact subwavelength cavity
resonator is very large since the volume of the subwavelength cavity resonator containing the
left-handed medium can be very small [24]. In particular, the critical field strength Ec in the
subwavelength resonator formed by the gyrotropic chiral media will be dramatically enhanced
by the gyrotropic parameter ε2. By using expressions (27) and (37), one can obtain

E−
c =

√√√√ 3h̄ω

2
√

ε1−ε2
µ1−µ2

d(n−ω)

dω
ε0V

. (38)

This is the critical field strength for the eigenmodes inside the subwavelength cavity resonator
containing the gyrotropic chiral medium. In order to achieve a negative refractive index, the
term ε1 − ε2 should be small or tend to zero. This, therefore, means that E−

c may be very
large, and that the quantum vacuum fluctuation field in such a compact cavity resonator is
hence very strong. This may enable physicists to study the property of quantum vacuum in the
subwavelength cavity resonator. It can be understood that the classical boundary condition for
the case of weak fields in a subwavelength cavity resonator cannot be easily fulfilled because
the field strength such as (32) is discrete (due to the integer n̄k). This may be utilized to,
e.g., the application of so-called manipulation of photon number in the subwavelength cavity
resonator.

In addition, the problem of validity of the classical boundary condition in the
subwavelength cavity resonator should be considered because of the number–phase uncertainty
relation 	nk	φ � 1

2 [26]. Here 	nk and 	φ denote the photon number uncertainty and
the phase uncertainty of the photon field. It is known that the number–phase uncertainty
relation would imply that a well-defined number state would actually have a phase uncertainty
of greater than 2π [26]. Thus the study of the subwavelength cavity resonators with
certain length scales is in need for a full quantum treatment. Such a quantum treatment
(including the study of the multiphoton state [27] in a compact cavity resonator) is of special
interest.

5. Concluding remarks

The chiral material that can exhibit a negative refractive index [19, 18] has been generalized
to a case of the gyrotropic chiral medium in this paper. The negative refractive indices of
the gyrotropic chiral material have been studied for certain eigenmodes, and the impedances
of the eigenmodes have been derived by using the concept of equivalent isotropic media.
Since the gyrotropic parameters in the anisotropy matrices of the electric permittivity and
magnetic permeability favour the realization of the negative refractive index, the negatively
refracting material can be achieved even far off the resonances of the permittivity or
permeability. We have shown that the gyrotropic chiral materials can be applied to the
subwavelength cavity resonator, and that there may exist a novel effect of field quantization
in the subwavelength resonator containing the gyrotropic chiral material with backward wave
eigenmodes.

Acknowledgments

This work is supported by the Wenner-Gren Foundations (Sweden) and the National Basic
Research Program of China (Project No. 2004CB719800).



466 J Q Shen and S He

References

[1] Veselago V G 1968 Sov. Phys.—Usp. 10 509
[2] Shelby R A, Smith D R and Schultz S 2001 Science 292 77
[3] Pendry J B 2001 Phys. Rev. Lett. 85 3966
[4] Chen L, He S and Shen L 2004 Phys. Rev. Lett. 92 107404
[5] Lakhtakia A 2004 AEU-Int. J. Electron. Commun. 58 229
[6] Lakhtakia A 2003 Opt. Express 11 716
[7] Cheng Q and Cui T J 2005 Opt. Lett. 30 1216
[8] Pendry J B, Holden A J, Robbins D J and Stewart W J 1998 J. Phys. Condens. Matter 10 4785
[9] Pendry J B, Holden A J, Stewart W J and Youngs I 1996 Phys. Rev. Lett. 76 4773

[10] Berrier A, Mulot M, Swillo M, Qiu M, Thylén L, Talneau A and Anand S 2004 Phys. Rev. Lett. 93 073902
[11] He S, Ruan Z C, Chen L and Shen J Q 2004 Phys. Rev. B 70 115113
[12] Xiao S, Qiu M, Ruan Z C and He S 2004 Appl. Phys. Lett. 85 4269
[13] Xiao S, Shen L and He S 2004 IEEE Photonics Technol. Lett. 16 171
[14] Eleftheriades G V, Iyer A K and Kremer P C 2002 IEEE Trans. Microw. Theory Tech. 50 2702
[15] Shen J Q, Ruan Z C and He S 2004 J. Zhejiang Univ. Sci. (China) 5 1322
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